Publications of Frederick Roy

Publications HAL de roy de la structure shacra;mimesis

2017

Conference papers

Screen%20Shot%202017-06-19%20at%203.30.12%20PM.png
titre
DejaVu: Intra-operative Simulation for Surgical Gesture Rehearsal
auteur
Nazim Haouchine, Danail Stoyanov, Frederick Roy, Stéphane Cotin
article
Medical Image Computing and Computer Assisted Interventions Conference MICCAI 2017, Oct 2017, Quebec City, Canada
resume
Advances in surgical simulation and surgical augmented reality have changed the way surgeons prepare for practice and conduct medical procedures. Despite considerable interest from surgeons, the use of simulation is still predominantly confined to pre-operative training of surgical tasks and the lack of robustness of surgical augmented reality means that it is seldom used for surgical guidance. In this paper, we present DejaVu, a novel surgical simulation approach for intra-operative surgical gesture rehearsal. With DejaVu we aim at bridging the gap between pre-operative surgical simulation and crucial but not yet robust intra-operative surgical augmented reality. By exploiting intra-operative images we produce a simulation that faithfully matches the actual procedure without visual discrepancies and with an underlying physical modelling that performs real-time deformation of organs and surrounding tissues, surgeons can interact with the targeted organs through grasping, pulling or cutting to immediately rehearse their next gesture. We present results on different in vivo surgical procedures and demonstrate the feasibility of practical use of our system.
Accès au texte intégral et bibtex
https://hal.archives-ouvertes.fr/hal-01542395/file/dejavu-249.pdf BibTex

2016

Conference papers

im.jpg
titre
Using Contours as Boundary Conditions for Elastic Registration during Minimally Invasive Hepatic Surgery
auteur
Nazim Haouchine, Frederick Roy, Lionel Untereiner, Stéphane Cotin
article
International Conference on Intelligent Robots and Systems, Oct 2016, Daejeon, South Korea
resume
We address in this paper the ill-posed problem of initial alignment of pre-operative to intra-operative data for augmented reality during minimally invasive hepatic surgery. This problem consists of finding the rigid transformation that relates the scanning reference and the endoscopic camera pose, and the non-rigid transformation undergone by the liver w.r.t its scanned state. Most of the state-of-the-art methods assume a known initial registration. Here, we propose a method that permits to recover the deformation undergone by the liver while simultaneously finding the rotational and translational parts of the transformation. Our formulation considers the boundaries of the liver with its surrounding tissues as hard constraints directly encoded in an energy minimization process. We performed experiments on real in-vivo data of human hepatic surgery and synthetic data, and compared our method with related works.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01353185/file/haouchine_iros2016.pdf BibTex

2015

Conference papers

titre
Framework for augmented reality in Minimally Invasive laparoscopic surgery
auteur
Bruno Marques, Rosalie Plantefeve, Frédérick Roy, Nazim Haouchine, Emmanuel Jeanvoine, Igor Peterlik, Stéphane Cotin
article
HealthCom 2015, Oct 2015, Boston, United States. 2015 17th International Conference on E-health Networking, Application & Services (HealthCom) 2015, <10.1109/HealthCom.2015.7454467>
resume
This article presents a framework for fusing pre-operative data and intra-operative data for surgery guidance. This framework is employed in the context of Minimally Invasive Surgery (MIS) of the liver. From stereoscopic images a three dimensional point cloud is reconstructed in real-time. This point cloud is then used to register a patient-specific biomechanical model derived from Computed Tomography images onto the laparoscopic view. In this way internal structures such as vessels and tumors can be visualized to help the surgeon during the procedure. This is particularly relevant since abdominal organs undergo large deformations in the course of the surgery, making it difficult for surgeons to correlate the laparoscopic view with the pre-operative images. Our method has the potential to reduce the duration of the operation as the biomechanical model makes it possible to estimate the in-depth position of tumors and vessels at any time of the surgery, which is essential to the surgical decision process. Results show that our method can be successfully applied during laparoscopic procedure without interfering with the surgical work flow.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01315574/file/article.pdf BibTex
IceballRender-shorter2.jpg
titre
Augmented Reality for Cryoablation Procedures
auteur
Hugo Talbot, Frederick Roy, Stéphane Cotin
article
SIGGRAPH 2015, Aug 2015, Los Angeles, United States
resume
Cryotherapy is a rapidly growing minimally invasive technique for the treatment of different kinds of tumors, such as breast cancer, renal and prostate cancer. Several hollow needles are percutaneously inserted in the target area under image guidance and a gas (usually argon) is then decompressed inside the needles. Based on the Thompson-Joule principle, the temperature drops drown and a ball of ice crystals forms around the tip of each needle. Radiologists rely on the geometry of this iceball (273K), visible on computer tomographic (CT) or magnetic resonance (MR) images, to assess the status of the ablation. However, cellular death only occurs when the temperature falls below 233K. The complexity of the procedure therefore resides in planning the optimal number, position and orientation of the needles required to treat the tumor, while avoiding any damage to the surrounding healthy tissues. This planning is currently done qualitatively, based on experience, and can take several hours, with a result that is often different from the expected one. To solve this important limitation of cryotherapy, a few planning systems have been proposed in the literature. Currently, commercial systems are nearly non existent, and emerging tools are limited to a visualization of the isotherms obtained for each needle in ideal conditions (usually in a gel). They do not account for any influence of the soft tissue properties, the presence of blood vessels, or the combined effect of multiple needles. As a consequence, large safety margins over 5mm are defined. To address this challenge, our method extracts information from medical images (CT or MR) and allows to assess different strategies with an augmented visualization of the resulting iceball and the associated isotherms.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01180848/file/SIGGRAPH-0488.pdf BibTex

2010

Conference papers

titre
Computer-Based Simulation of Cataract Surgery: Toward a New Teaching Paradigm
auteur
Nadia Boubchir, Stephane Cotin, Olivier Comas, Frederick Roy, Christian Duriez, Jérémie Dequidt, Jeremie Allard, Jean-Francois Rouland
article
Annual Meeting of the American Academy of Ophthalmology, 2010, Fort Lauderdale, United States. 2010
resume
no abstract
Accès au bibtex
BibTex