Publications of Hugo Talbot

Publications HAL de talbot de la structure shacra;mimesis

2015

Conference papers

IceballRender-shorter2.jpg
titre
Augmented Reality for Cryoablation Procedures
auteur
Hugo Talbot, Frederick Roy, Stéphane Cotin
article
SIGGRAPH 2015, Aug 2015, Los Angeles, United States
resume
Cryotherapy is a rapidly growing minimally invasive technique for the treatment of different kinds of tumors, such as breast cancer, renal and prostate cancer. Several hollow needles are percutaneously inserted in the target area under image guidance and a gas (usually argon) is then decompressed inside the needles. Based on the Thompson-Joule principle, the temperature drops drown and a ball of ice crystals forms around the tip of each needle. Radiologists rely on the geometry of this iceball (273K), visible on computer tomographic (CT) or magnetic resonance (MR) images, to assess the status of the ablation. However, cellular death only occurs when the temperature falls below 233K. The complexity of the procedure therefore resides in planning the optimal number, position and orientation of the needles required to treat the tumor, while avoiding any damage to the surrounding healthy tissues. This planning is currently done qualitatively, based on experience, and can take several hours, with a result that is often different from the expected one. To solve this important limitation of cryotherapy, a few planning systems have been proposed in the literature. Currently, commercial systems are nearly non existent, and emerging tools are limited to a visualization of the isotherms obtained for each needle in ideal conditions (usually in a gel). They do not account for any influence of the soft tissue properties, the presence of blood vessels, or the combined effect of multiple needles. As a consequence, large safety margins over 5mm are defined. To address this challenge, our method extracts information from medical images (CT or MR) and allows to assess different strategies with an augmented visualization of the resulting iceball and the associated isotherms.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01180848/file/SIGGRAPH-0488.pdf BibTex
patient_2-MeasuredDT.png
titre
Personalization of Cardiac Electrophysiology Model using the Unscented Kalman Filtering
auteur
Hugo Talbot, Stephane Cotin, Reza Razavi, Christopher Rinaldi, Hervé Delingette
article
Computer Assisted Radiology and Surgery (CARS 2015), Jun 2015, Barcelona, Spain
resume
Cardiac electrophysiology mapping techniques now allow to record denser intra-operative electrograms (ECG). The patient-specific information extracted from these clinical recordings is extremely valuable. A growing field of research focuses on the personalization of electro-physiology models using this patient-specific information. The modeling in silico of a patient electrophysiology is needed to better understand the mechanism of cardiac arrhythmia. In the scope of ischemic cardiomyopa-thy, the predictive power of patient-specific simulations may also provide a substantial guidance in defining the optimal location of the implantable defibrillator, since all possible configurations could be tested in silico. This article describes an innovative personalization approach based on an unscented Kalman filter. Following an iterative process, the apparent conductivity is efficiently estimated in specific regions. A sensitivity analysis is performed to assess the filter parameters. With three patient cases, we finally demonstrate the accuracy and efficiency of our algorithm.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01195719/file/CARS2015-HTalbot.pdf BibTex
thumb.png
titre
Surgery Training, Planning and Guidance Using the SOFA Framework
auteur
Hugo Talbot, Nazim Haouchine, Igor Peterlik, Jeremie Dequidt, Christian Duriez, Hervé Delingette, Stephane Cotin
article
Eurographics, May 2015, Zurich, Switzerland
resume
In recent years, an active development of novel technologies dealing with medical training, planning and guidance has become an increasingly important area of interest in both research and health-care manufacturing. A combination of advanced physical models, realistic human-computer interaction and growing computational power is bringing new solutions in order to help both medical students and experts to achieve a higher degree of accuracy and reliability in surgical interventions. In this paper, we present three different examples of medical physically-based simulations implemented in a common software platform called SOFA. Each example represents a different application: training for cardiac electrophysiology, pre-operative planning of cryosurgery and per-operative guidance for laparoscopy. The goal of this presentation is to evaluate the realism, accuracy and efficiency of the simulations, as well as to demonstrate the potential and flexibility of the SOFA platform.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01160297/file/Sofa-EG2015.pdf BibTex

2014

Conference papers

AblationScar2.jpg
titre
Interactive Training System for Interventional Electrocardiology Procedures
auteur
H Talbot, F Spadoni, Christian Duriez, M Sermesant, Stéphane Cotin, Hervé Delingette
article
6th International Symposium on Biomedical Simulation – ISBMS 2014, Oct 2014, Strabsourg, France. pp.11 – 19, 2014, <10.1007/978-3-319-12057-7_2>
resume
Recent progress in cardiac catheterization and devices al-lowed to develop new therapies for severe cardiac diseases like arrhyth-mias and heart failure. The skills required for such interventions are still very challenging to learn, and typically acquired over several years. Vir-tual reality simulators can reduce this burden by allowing to practice such procedures without consequences on patients. In this paper, we propose the first training system dedicated to cardiac electrophysiology, includ-ing pacing and ablation procedures. Our framework involves an efficient GPU-based electrophysiological model. Thanks to an innovative mul-tithreading approach, we reach high computational performances that allow to account for user interactions in real-time. Based on a scenario of cardiac arrhythmia, we demonstrate the ability of the user-guided simulator to navigate inside vessels and cardiac cavities with a catheter and to reproduce an ablation procedure involving: extra-cellular poten-tial measurements, endocardial surface reconstruction, electrophysiology mapping, radio-frequency (RF) ablation, as well as electrical stimulation. This works is a step towards computerized medical learning curriculum.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01078209/file/HugoTalbot-ISBMS2014.pdf BibTex
GraphicalAbstract.jpg
titre
Interactive Training System for Interventional Electrocardiology Procedures
auteur
Hugo Talbot, Federico Spadoni, Christian Duriez, Maxime Sermesant, Stéphane Cotin, Hervé Delingette
article
Biomedical Simulation: 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014. Proceedings, Oct 2014, Strasbourg, France. Lecture Notes in Computer Science (LNCS), 8789, pp.11-19, 2016, <10.1007/978-3-319-12057-7_2>
resume
Recent progress in cardiac catheterization and devices has allowed the development of new therapies for severe cardiac diseases like arrhythmias and heart failure. The skills required for such interventions are very challenging to learn, and are typically acquired over several years. Virtual reality simulators may reduce this burden by allowing trainees to practice such procedures without risk to patients. In this paper, we propose the first training system dedicated to cardiac electrophysiology, including pacing and ablation procedures. Our framework involves the simulation of a catheter navigation that reproduces issues intrinsic to intra-cardiac catheterization, and a graphics processing unit (GPU)-based electrophysiological model. A multi-threading approach is proposed to compute both physical simulations (navigation and electrophysiology) asynchronously. With this method, we reach computational performances that account for user interactions in real-time. Based on a scenario of cardiac arrhythmia, we demonstrate the ability of the user-guided simulator to navigate inside vessels and cardiac cavities with a catheter and to reproduce an ablation procedure involving: extra-cellular potential measurements, endocardial surface reconstruction, electrophysiol-ogy mapping, radio-frequency (RF) ablation, as well as electrical stimulation. A clinical evaluation assessing the different aspects of the simulation is presented. This works is a step towards computerized medical learning curriculum.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-01338346/file/Talbot_H.pdf BibTex
miniature-article.png
titre
Interactive Planning of Cryotherapy Using Physically-Based Simulation
auteur
Hugo Talbot, Myriam Lekkal, Rémi Béssard-Duparc, Stéphane Cotin
article
MMVR 21 – Medicine Meets Virtual Reality – 2014, Feb 2014, Manhattan Beach, California, United States. 2014
resume
Cryotherapy is a rapidly growing minimally invasive technique for the treatment of certain tumors. It consists in destroying cancer cells by extreme cold delivered at the tip of a needle-like probe. As the resulting iceball is often smaller than the targeted tumor, a key to the success of cryotherapy is the planning of the position and orientation of the multiple probes required to treat a tumor, while avoiding any damage to the surrounding tissues. In order to provide such a planning tool, a number of challenges need to be addressed such as fast and accurate computation of the freezing process or interactive positioning of the virtual cryoprobes in the pre-operative image volume. To address these challenges, we present an approach which relies on an advanced computational framework, and a gesture-based planning system using contact-less technology to remain compatible with a use in a sterile environment.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-00918200/file/Talbot_H.pdf BibTex

Theses

titre
Interactive Patient-Specific Simulation of Cardiac Electrophysiology
auteur
Hugo Talbot
article
Computer Science [cs]. Université des Sciences et Technologies de Lille, 2014. English
resume
As in most of the medical departments, interns in cardiac electrophysiology follow a curriculum combining an intense theoritical learning with a long clinical practice. After years of theory (mainly book learning), junior electrophysiologists start practicing on patients under the supervision of a senior cardiologist. In the last decades, the improvement of computational technologies led to the development of numerical tools dedicated to training, planning or guiding of surgical procedures. The objective of this thesis is to construct a training framework, allowing junior electrophysiologists to practice radio-frequency (RF) ablation for the treatment of ventricular arrhythmias on virtual patients. Training on in silico models can not only shorten the electrophysiology curriculum, but it can also standardize it. Yet the development of such training systems raises several challenges. The first challenge consists in simulating the cardiac electrophysiology in real-time. Through the improvement of cardiac imaging, characterization of the normal and arrhythmic electrical activity of the heart using mathematical models has been an important research topic. We focus here on a model representing the electrophysiology at the organ scale: the Mitchell-Schaeffer model. A powerful GPU implementation is proposed to reach real-time performances. Our efficient electrophysiology model is coupled with a mechanical model of the heart. A realistic left bundle branch block can be simulated, thus inducing the associated late contraction of the left ventricle. For clinical application of electrophysiological mathematics, our virtual scenario of cardiac arrhythmias needs to be personalized. This crucial step aims at adapting all model parameters in order to fit patient data, acquired intra-operatively. After a detailed state of the art of optimization methods, the unscented Kalman filter deriving from a Bayesian approach is chosen and applied on a dataset of three patients suffering from ventricular tachycardia. Relying on our GPU electrophysiology model, the optimization process is achieved in about 20~minutes, while faithfully reproducing the pathology recorded in the operation room. Lastly, the construction of the first training framework dedicated to cardiac ablation is presented. The scenario reproduces the catheter navigation inside the vascular system using a physics-based approach, and the beating heart is modeled from patient data. In addition to the cardiovascular navigation, a case of an ectopic focus in the right ventricle is modeled using our GPU implementation. An innovative multithreading approach couples both simulations, thus offering performances close to real-time. The computational efficiency allows the trainee to interact with the simulation and perform all the clinical gestures, namely electrical catheter measurements, electro-anatomical mapping, electrical stimulation and eventually RF ablation. A clinical evaluation by electrophysiologists highlights the good performances and the realism of the training framework.
Accès au texte intégral et bibtex
https://hal.inria.fr/tel-01097201/file/Thesis.pdf BibTex

2013

Journal articles

Couv.png
titre
Towards an Interactive Electromechanical Model of the Heart
auteur
Hugo Talbot, Stéphanie Marchesseau, Christian Duriez, Maxime Sermesant, Stéphane Cotin, Hervé Delingette
article
Interface Focus, Royal Society publishing, 2013, The Virtual Physiological Human: Integrative Approaches to Computational Biomedicine, 3 (2), pp.4. <http://rsfs.royalsocietypublishing.org/content/3/2/20120091.full.pdf+html>. <10.1098/rsfs.2012.0091>
resume
In this work, we develop an interactive framework for rehearsal and training in the context of cardiac catheter ablation, and for planning in the context of Cardiac Resynchronization Therapy (CRT). To this end, an interactive and real-time electrophysiology model of the heart is developed to fit patient-specific data. The proposed interactive framework relies on two main contributions. An efficient implementation of cardiac electrophysiology is first proposed using latest GPU computing techniques. Second, a mechanical simulation is then coupled to the electrophysiological signals to produce realistic motion of the heart. We demonstrate that pathological mechanical and electrophysiological behaviour can be simulated.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-00797354/file/Interface_Focus-2013-Talbot.pdf BibTex

Reports

miniature-report.jpg
titre
Deliverable D10.4.2
auteur
Hugo Talbot, Federico Spadoni, Maxime Sermesant, Nicholas Ayache, Hervé Delingette
article
[Research Report] 2013, pp.22
resume
This deliverable describes the final status of Task 10.4 of Workpackage 10 of the euHeart project. The aim of this task is to develop a prototype of an endovascular simulator of cardiac radiofrequency ablation. More precisely, its purpose is to simulate the patient-specific catheter navigation and radiofre- quency ablation of ventricular tachycardia. Since deliverable 10.4.1, work on the simulator prototype has focused on the development of a user interface and the integration of two software compo- nents : endovascular simulation and electrophysiology simulation. The first component aims at modeling the deformation of catheters and guidewires inside vessels and to generate a realistic visualization of the vis- ible X-ray images. The second component is focused on the simulation of electrophysiology. We have chosen the Mitchell-Schaeffer phenomenological model to represent the evolution of action potential on the myocardium. The integration of those 2 software components is difficult because they should both run simultaneously in real-time. To this end, we have developed a multi-thread framework allowing to parallelize the computation of the catheter deformation and the cardiac electrophysiology while sharing a minimum num- ber of information. We have also developed a user interface that can display X-ray images, 3D view of the heart and simulated electro-physiology signals measured at the tip of the catheter. An example of simulation is provided starting from the endovascular navi- gation from the veina cava and finishing with the radiofrequency ablation of endocardial tissue inside the right ventricle.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-00918211/file/euHeart_Deliverable_10-4-2.pdf BibTex

2012

Conference papers

Sofa-StimulationSide.png
titre
Towards Real-Time Computation of Cardiac Electrophysiology for Training Simulator
auteur
Hugo Talbot, Christian Duriez, Hadrien Courtecuisse, Jatin Relan, Maxime Sermesant, Stéphane Cotin, Hervé Delingette
article
Statistical Atlases and Computational Models of the Heart – STACOM 2012 in the 15th International Conference on Medical Image Computing and Computer Assisted Intervention – MICCAI 2012, Oct 2012, Nice, France. Springer, 2012, Lecture Notes in Computer Science
resume
This work aims at developing a training simulator for interventional radiology and thermo-ablation of cardiac arrhythmias. To achieve this, a real-time model of the cardiac electrophysiology is needed, which is very challenging due to the stiff equations involved. In this paper, we detail our contributions in order to obtain efficient cardiac electrophysiology simulations. First, an adaptive parametrisation of the Mitchell-Schaeffer model as well as numerical optimizations are proposed. An accurate computation of both conduction velocity and action potential is ensured, even with relatively coarse meshes. Second, a GPU implementation of the electrophysiology was realised in order to decrease the computation time. We evaluate our results by comparison with an accurate reference simulation using model parameters, personalized on patient data. We demonstrate that a fast simulation (close to real-time) can be obtained while keeping a precise description of the phenomena.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-00750835/file/SimulationOfCardiacAblation-STACOM2012.pdf BibTex
Navigation.png
titre
Interactive Electromechanical Model of the Heart for Patient-Specific Therapy Planning and Training using SOFA
auteur
Hugo Talbot, Stéphanie Marchesseau, Christian Duriez, Hadrien Courtecuisse, Jatin Relan, Maxime Sermesant, Stéphane Cotin, Hervé Delingette
article
VPH 2012, Sep 2012, Londres, United Kingdom. 2012
resume
The contributions of this work are twofold. First, we developed an electrophysiological training simulator in SOFA which tackles the interactive issue in the context of cardiac arrhythmias. Coupled with this electrophysiology, we developed a mechanical model of the heart that can be personalized from MRI datasets. Our simulations are based on the SOFA platform. SOFA is an open-source framework targeted at real-time simulation with an emphasis on medical simulation, mainly developed at Inria. A large choice of efficient solvers, hyperelastic or viscous material laws are already implemented in SOFA. Moreover, it enables interactivity during the simulation (pacing, surgery planning, …) and gives a good trade-off between accuracy and computational efficiency.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-00751537/file/VPH2012.pdf BibTex

Book sections

NewLiverMap.png
titre
SOFA: A Multi-Model Framework for Interactive Physical Simulation
auteur
François Faure, Christian Duriez, Hervé Delingette, Jérémie Allard, Benjamin Gilles, Stéphanie Marchesseau, Hugo Talbot, Hadrien Courtecuisse, Guillaume Bousquet, Igor Peterlik, Stéphane Cotin
article
Yohan Payan. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, 11, Springer, pp.283-321, 2012, Studies in Mechanobiology, Tissue Engineering and Biomaterials, 978-3-642-29013-8. <10.1007/8415_2012_125>
resume
SOFA (Simulation Open Framework Architecture) is an open-source C++ library primarily targeted at interactive computational medical simulation. SOFA facilitates collaborations between specialists from various domains, by decomposing complex simulators into components designed independently and organized in a scenegraph data structure. Each component encapsulates one of the aspects of a simulation, such as the degrees of freedom, the forces and constraints, the differential equations, the main loop algorithms, the linear solvers, the collision detection algorithms or the interaction devices. The simulated objects can be represented using several models, each of them optimized for a different task such as the computation of internal forces, collision detection, haptics or visual display. These models are synchronized during the simulation using a mapping mechanism. CPU and GPU implementations can be transparently combined to exploit the computational power of modern hardware architectures. Thanks to this flexible yet efficient architecture, \sofa{} can be used as a test-bed to compare models and algorithms, or as a basis for the development of complex, high-performance simulators.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-00681539/file/main.pdf BibTex

2011

Reports

miniature-report.jpg
titre
Deliverable D10.4.1
auteur
Hugo Talbot, Federico Spadoni, Maxime Sermesant, Nicholas Ayache, Hervé Delingette
article
[Research Report] 2011, pp.25
resume
This deliverable describes the final status of Task 10.4 of Workpackage 10 of the euHeart project. The aim of this task is to develop a prototype of an endovascular simulator of cardiac radiofrequency ablation. More precisely, its purpose is to simulate the patient-specific catheter navigation and radiofre- quency ablation of ventricular tachycardia. Since deliverable 10.4.1, work on the simulator prototype has focused on the development of a user interface and the integration of two software compo- nents : endovascular simulation and electrophysiology simulation. The first component aims at modeling the deformation of catheters and guidewires inside vessels and to generate a realistic visualization of the vis- ible X-ray images. The second component is focused on the simulation of electrophysiology. We have chosen the Mitchell-Schaeffer phenomenological model to represent the evolution of action potential on the myocardium. The integration of those 2 software components is difficult because they should both run simultaneously in real-time. To this end, we have developed a multi-thread framework allowing to parallelize the computation of the catheter deformation and the cardiac electrophysiology while sharing a minimum num- ber of information. We have also developed a user interface that can display X-ray images, 3D view of the heart and simulated electro-physiology signals measured at the tip of the catheter. An example of simulation is provided starting from the endovascular navi- gation from the veina cava and finishing with the radiofrequency ablation of endocardial tissue inside the right ventricle.
Accès au texte intégral et bibtex
https://hal.inria.fr/hal-00918216/file/euHeart_Deliverable_10-4-1.pdf BibTex